5. The time-dependent Schrödinger equation

5.1. The time-dependent Schrödinger equation

The time-dependent Schrödinger equation for a single particle moving in a potential \(V(\mathbf{r})\) interacting with a (classical) electromagnetic field given by the vector potential \(A(\mathbf{r},t)\) is, in the Coulomb gauge (\(\nabla \cdot A(\mathbf{r},t)=0\)), given by

\[\begin{split}i \dot{\Psi}(\mathbf{r}, t) &= \left( \frac{1}{2} \left( \hat{p} + A(\mathbf{r},t) \right)^2 + V(\mathbf{r}) \right) \Psi(\mathbf{r}, t) \\ &= \left(-\frac{1}{2} \nabla^2 + A(\mathbf{r},t) \cdot \hat{p} + \frac{1}{2}A(\mathbf{r},t)^2 + V(\mathbf{r}) \right) \Psi(\mathbf{r}, t)\end{split}\]

In spherical coordinates, we parametrize time-dependent wavefunction as

\[\Psi(\mathbf{r},t) = \sum_{l=0}^L \sum_{m=-l}^l \frac{u_{l,m}(r,t)}{r} Y_l^m(\theta, \phi).\]

Inserting this ansatz into to TDSE yields

\[i \sum_{l,m} \frac{1}{r} \dot{u}_{l,m}(r,t) Y_l^m(\Omega) = \sum_{l,m} \left( \frac{1}{r}\left( -\frac{1}{2}\frac{d^2u_{l,m}(r,t)}{dr^2} + V_l(r)u_{l,m}(r,t) \right) Y_l^m(\Omega) \right) + V_I(\mathbf{r}, t) \Psi(\mathbf{r}, t),\]

where we have defined the time-dependent interaction potential as

\[V_I(\mathbf{r}, t) = A(\mathbf{r},t) \cdot \hat{p} + \frac{1}{2}A(\mathbf{r},t)^2.\]

Multiplying through with \(r\) and \(Y_{l^\prime, m^\prime}^*(\Omega)\) and integrating over \(\Omega\) yields equations of motion for \(u_{l,m}(r,t)\),

\[i \dot{u}_{l^\prime,m^\prime}(r,t) = \left( -\frac{1}{2} \frac{d^2 u_{l^\prime,m^\prime}(r,t)}{dr^2} + V_{l^\prime}(r)u_{l^\prime,m^\prime}(r,t) \right) + r \int Y_{l^\prime, m^\prime}^*(\Omega) V_I(\mathbf{r}, t) \Psi(\mathbf{r}, t) d\Omega\]

5.2. Classical electromagnetic fields

5.2.1. The dipole approximation

\[\begin{split}A(\mathbf{r},t) &\approx A(t) \vec{u}, \\ \mathcal{E}(\mathbf{r}, t) &\approx -\frac{\partial A(t)}{\partial t} \vec{u}.\end{split}\]

5.2.2. Length gauge

\[V_I(\mathbf{r}, t) = \mathcal{E}(t) \vec{u} \cdot \mathbf{r}\]

Using the integrals over position operators given in (see Spherical harmonics) we have that

\[\begin{split}i \dot{u}_{l^\prime,m^\prime}(r,t) = \left( -\frac{1}{2} \frac{d^2 u_{l^\prime,m^\prime}(r,t)}{dr^2} + V_{l^\prime}(r)u_{l^\prime,m^\prime}(r,t) \right) + r \mathcal{E}(t) \begin{cases} \frac{1}{2}\sum_{l, m} (b_{l-1,-m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m+1} - b_{l,m}\delta_{l^\prime, l+1}\delta_{m^\prime, m+1} - b_{l-1,m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m-1} + b_{l,-m}\delta_{l^\prime, l+1}\delta_{m^\prime, m-1}) u_{l,m}(r,t), \text{ if } \vec{u} = \vec{e}_x \\ \frac{i}{2}\sum_{l,m} (b_{l-1,-m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m+1} - b_{l,m}\delta_{l^\prime, l+1}\delta_{m^\prime, m+1} + b_{l-1,m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m-1} - b_{l,-m}\delta_{l^\prime, l+1}\delta_{m^\prime, m-1}) u_{l,m}(r,t), \text{ if } \vec{u} = \vec{e}_y \\ \sum_{l,m} (a_{l,m}\delta_{l^\prime, l+1}\delta_{m^\prime, m} + a_{l-1,m}\delta_{l^\prime, l-1}\delta_{m^\prime, m}) u_{l,m}(r,t), \text{ if } \vec{u} = \vec{e}_z \end{cases}\end{split}\]

Similar to the approach we used for the TISE (see The time-independent Schrödinger equation), we introduce the new wavefunction \(\phi_{l,m}(x) = \dot{r}(x)^{1/2}u_{l,m}(r(x))\) and discretrize the EOMs with the pseudospectral method, which yields

\[\begin{split}i \dot{\phi}_{l^\prime, m^\prime}(x_i) = \sum_{j=1}^{N-1} \left(-\frac{1}{2} \frac{\tilde{g}^{\prime \prime}_j(x_i)}{\dot{r}(x_i) \dot{r}(x_j)} \tilde{\phi}_{l^\prime,m^\prime}(x_j) \right) + V_{l^\prime}(r(x_i))\tilde{\phi}_{l^\prime,m^\prime}(x_i) + r(x_i) \mathcal{E}(t) \begin{cases} \frac{1}{2}\sum_{l, m} (b_{l-1,-m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m+1} - b_{l,m}\delta_{l^\prime, l+1}\delta_{m^\prime, m+1} - b_{l-1,m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m-1} + b_{l,-m}\delta_{l^\prime, l+1}\delta_{m^\prime, m-1}) \tilde{\phi}_{l,m}(x_i), \text{ if } \vec{u} = \vec{e}_x \\ \frac{i}{2}\sum_{l,m} (b_{l-1,-m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m+1} - b_{l,m}\delta_{l^\prime, l+1}\delta_{m^\prime, m+1} + b_{l-1,m-1}\delta_{l^\prime, l-1}\delta_{m^\prime, m-1} - b_{l,-m}\delta_{l^\prime, l+1}\delta_{m^\prime, m-1}) \tilde{\phi}_{l,m}(x_i), \text{ if } \vec{u} = \vec{e}_y \\ \sum_{l,m} (a_{l,m}\delta_{l^\prime, l+1}\delta_{m^\prime, m} + a_{l-1,m}\delta_{l^\prime, l-1}\delta_{m^\prime, m}) \tilde{\phi}_{l,m}(x_i), \text{ if } \vec{u} = \vec{e}_z \end{cases}\end{split}\]

5.2.3. Velocity gauge

\[V_I(\mathbf{r}, t) = A(t) \cdot \hat{p} + \frac{1}{2}A(t)^2\]

5.3. Beyond dipole approximation